Rb₂Au₃, eine Schichtstruktur im System Rubidium-Gold*

Uwe Zachwieja

Fachbereich Chemie der Universität Dortmund, D-44221 Dortmund 50 (Deutschland)

(Eingegangen am 13. November, 1993)

Abstract

Silver-coloured brittle single crystals of a hitherto unknown Rb₂Au₃ were synthesized by the reaction of RbN₃ and gold powder at 450 °C. The structure was determined from X-ray single-crystal diffractometry data: space group *Immm*; Z = 2; a = 4.942(2) Å; b = 5.442(3) Å; c = 10.601(6) Å; $R/R_w(w = 1) = 0.057/0.066$; $Z(F_0^2) \ge 3\sigma(F_0^2) = 152$ and Z(var.) = 12.

 Rb_2Au_3 crystallizes in a layer structure. The gold atoms form plane 3.6.3.6. + $3^26^2(1:2)$ -nets. These layers are separated by rubidium atoms along [001]. The stacking sequence is characterized by $A_{Rb}B_{Rb}A_{Rb}B$. The structural relationships between Rb_2Au_3 (Ca_2GaCu_2 -type) and the K_2PtS_2 - and W_2CoB_2 -type are discussed.

Zusammenfassung

Silberfarbene, spröde Einkristalle eines bislang unbekannten Rb₂Au₃ wurden durch Umsetzung von RbN₃ und Goldpulver bei 450 °C hergestellt. Die Struktur wurde aus Röntgen-Einkristall-Diffraktometerdaten bestimmt: Raumgruppe *Immm*, Z = 2, a = 4,942(2)Å, b = 5,442(3)Å, c = 10,601(6)Å, $R/R_w(w=1) = 0,057/0,066, Z(F_0^2) \ge 3\sigma(F_0^2) = 152$ and Z(Var.) = 12.

 Rb_2Au_3 kristrallisiert in einer Schichtstruktur. Die Goldatome bilden ebene 3.6.3.6. + 3²6²(1:2)-Netze, die in Richtung [001] von Rubidiumatomen separiert sind. Die Schichtabfolge lautet $A_{Rb}B_{Rb}A_{Rb}B$. Strukturbeziehungen zwischen $Rb_2Au_3(Ca_2GaCu_2$ -Typ) und dem K_2PtS_2 - und W_2CoB_2 -Typ werden diskutiert.

1. Einleitung

Im Rahmen unserer Strukturuntersuchungen am System Rubidium-Gold haben wir kürzlich über Einkristallzüchtung und Strukturverfeinerung von RbAu [1], Rb₃Au₇ [2] und RbAu₅ [3] berichtet. Nach den von uns durchgeführten präparativen Untersuchungen tritt im System Rb-Au außerdem ein Rb₂Au₃ auf, dessen Darstellung und Struktur hier mitgeteilt wird. Die Synthese dieser Verbindung erfolgte nach einem bereits mehrfach von uns angewandten Verfahren [1-4], bei dem Alkalimetallazid und Goldpulver bei relativ niedriger Temperatur miteinander umgesetzt werden.

2. Darstellung

 RbN_3 wurde aus HN_3 und Rb_2CO_3 (Fa. Fluka) gemäß Lit. 5 hergestellt und mehrfach aus Wasser umkristallisiert. Gold–Schwamm erhielt man durch Reduktion von H[AuCl₄]-Lösungen mit Oxalsäure nach Lit. 6. Die zuvor im Vakuum bei 150 °C getrockneten und danach unter Argon innig verriebenen Edukte wurden in Korundtiegel überführt, die von unvollständig verschlossenen Silberrohren umgeben wurden. Diese wurden in evakuierten Quarzglasampullen auf die gewünschte Temperatur gebracht. Bei 450 °C erhielt man bei Stoffmengenverhältnissen n(Rb)/n(Au) = 3/4 und Reaktionssowie Abkühlzeiten von jeweils 1 d grobkristallines, röntgenographisch phasenreines Rb₂Au₃. Das überschüssige Rb-Metall befand sich nach Beendigung der Reaktion am kälteren Ende der Quarzglasampullen. Rb₂Au₃ ist spröde und bildet silberfarbene, plättchenförmige Kristalle. Bei Ansätzen oberhalb von 450 °C entstanden Gemenge aus Rb₂Au₃ und dem kürzlich von uns beschriebenen Rb₃Au₇ [2]. Bei rubidiumreicheren Ansätzen wurden bei T < 450 °C Gemenge aus Rb₂Au₃ und RbAu [1] erhalten. Neben den bereits genannten Verbindungen ließen sich über röntgenographische Phasenanalysen keine weiteren nachweisen. Die Zellparameter von Rb₂Au₃ sind in allen Produktgemischen stets gleich groß. Die Titelverbindung hat demnach keine merkliche Phasenbreite. Die Handhabung der Produkte erfolgte wegen ihrer Luft-

^{*}Professor Friedo Huber zum 65. Geburtstage gewidmet.

^{0925-8388/94/\$07.00 © 1994} Elsevier Sequoia. All rights reserved SSDI 0925-8388(93)01053-7

empfindlichkeit in mit Argon gefüllten Handschuhkästen [7].

3. Röntgenographische Strukturbestimmung

An Einkristallen wurden Präzessionsaufnahmen mit MoK α -Strahlung angefertigt. Diese ließen sich ebenso wie Guinier-Diagramme (Vakuum-Guinier-Kamera FR 552 der Fa. Enraf-Nonius, CuK α_1 -Strahlung und Si als Standard) mit einer orthorhombisch I-zentrierten Elementarzelle volsständig interpretieren: a = 4,943(2) Å, b = 5,461(4) Å und c = 10,552(8) Å. Die Sammlung von Intensitätsdaten erfolgte auf einem Vierkreisdiffraktometer CAD 4 der Fa. Enraf-Nonius mit AgKa-Strahlung. Meßtechnische und kristallographische Daten sind in den Tabellen 1-3 zusammengestellt. Die Strukturlösung gelang mit "direkten Methoden" im Programmsystem SHELXTL PLUS [8]. Zur Strukturrechnung diente das Programmsystem SDP [9]. Die Verfeinerung der jeweils einzeln freigegebenen Besetzungsparameter zeigte bei gleich bleibenden R-Werten keine signifikante Abweichung von der idealen 2:3-Stöchiometrie (vgl. Tabelle 2).

TABELLE 1. Meßtechnische und kristallographische Daten zur röntgenographischen Einkristall-Strukturbestimmung von Rb_2Au_3

Kristalløröße (mm ³)	01×0025×01
Zellparameter (Å)	a = 4.942(2)
	h = 5.442(3)
	c = 10.601(6)
Volumen (Å ³)	285.4
$D_{\rm r} ({\rm g \ cm^{-3}})$	8,864
Formeleinheiten	2
Raumgruppe	Immm (Nr. 71)
$1/\mu(AgK\alpha)$ (mm)	0,020
Absorptionskorrektur	empirisch ("psi-scan")
-	20,0% min. rel. Transmission
Strahlung	AgKa (Graphit-Monochromator)
Abtastung	$\Omega/2\theta$
$\theta_{\rm max}/^{\circ}$	30
h, k, l	$\pm 8, \pm 9, \pm 18$
$R_{\rm intern}$ (%)	9,2
F_{o} asymm. Einheit	513
davon $F_{\rm o}^2 \ge 3\sigma F_{\rm o}^2$	152
Z(Var.)	12
$R/R_{w}(w=1)$	0,057/0,066
maximale	3,2
Restelektronendichte (e Å ⁻³)	

4. Strukturbeschreibung und Diskussion

Rb₂Au₃ ist isotyp mit dem von Krieger-Beck et al. beschriebenen K₂Au₃ [10]. Es kristallisiert in einer Die Schichtstruktur. Goldatome bilden ebene $3.6.3.6 + 3^26^2(1:2)$ -Netze (Schläfli Symbolik nach Lit. 11, vgl. Abb. 1), die in Richtung [001] durch Alkalimetall gemäß der Stapelabfolge $A_M B_M A_M B$ separiert sind (vgl. Abb. 2). Die Abstände d(Au-Au) innerhalb der Schichten sind kürzer als im Goldmetall und zeigen nur eine geringe Abhängigkeit vom jeweils vorhandenen Alkalimetall (vgl. Tabelle 4). Beim Übergang von der Kzur Rb-Verbindung erfolgt lediglich eine Aufweitung der Abstände zwischen den Schichten mit c/2=5,00 Å für K₂Au₃ und c/2 = 5,30 Å für Rb₂Au₃. Die Rb-Atome werden von 2 Au(1)- und 6 Au(2)-Atomen umgeben (vgl. Abb. 3). Die Abstände d(Rb-Au) sind deutlich kürzer als die Summe der Metallradien mit d(Rb-Au) = 3,91 Å (nach Lit. 12 für KZ = 8 bei Rb und KZ = 12 bei Au). Die Abstände d(Rb-Rb) = 3.85Å liegen zwischen denjenigen der ionogen aufgebauten Verbindungen RbF (d(Rb-Rb) = 3,99 Å [13]) und Rb₂O (d(Rb-Rb) = 3,37 Å [13]).

Die experimentellen Molvolumina von K₂Au₃ [10] von Rb₂Au₃ zeigen eine beträchtliche Schrumpfung von 32% bzw. 37% gegenüber den Summen der Molvolumina der ungeladenen Atome nach Biltz [14] (in cm³ mol⁻¹): $V(\exp)/V(Biltz) = 80,1/117,2$ für K₂Au₃ und $V(\exp)/V(Biltz) = 85,9/136,6$ für Rb₂Au₃. Die Differenz der experimentellen Molvolumina beider Verbindungen liegt mit 5,8 cm³ mol⁻¹ in der Größenordnung der Differenz der Alkalimetallkationen-Rauminkremente [14], $2 \times (V(Rb^+) - V(K^+)) = 8$ cm³ mol⁻¹. Die Differenz der Element-Volumina ist mit 19,4 cm³ mol⁻¹ deutlich größer. Die Alkalimetalle scheinen daher aus volumenchemischer Sicht als Kationen vorzuliegen.

An Schmelzen der schon lange bekannten Verbindung CsAu, dem sogenannten Caesiumaurid, sind zahlreiche Untersuchungsergebnisse bekannt [15], die das Voliegen von Cs⁺-Kationen und Hg⁰-isoelektronischen Auridionen, Au⁻, belegen. Auch für das von uns kürzlich an Einkristallen untersuchte feste CsAu [1], das im geordneten CsCl-Typ kristallisiert, ist die ionogene Grenzformulierung "Cs⁺Au⁻" wegen seiner Halbleitereigenschaften [16, 17] und der starken Volumenkontraktion gegenüber der Summe der Molvolumina der Elemente eine gute Näherung. Dieses stark ver-

TABELLE 2. Punktlagen, Besetzungen, Besetzungsparameter (f) sowie Lage- und isotrope Temperaturparameter (Å²) für Rb₂Au₃

Lage	Besetzung	f	x	у	Z	В
2a	2 Au(1)	1,01(1)	0	0	0	1,50(7)
4h	4 Au(2)	1,00(1)	1/2	0,2525(7)	0	1,06(3)
4j	4 Rb	1,00(2)	0	1/2	0,1968(9)	1,8(1)

TABELLE 3. Koeffizienten anisotroper Auslenkungsparameter U_{ij} (×10³ Å²) für Rb₂Au₃

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Au(1)	12(1)	14(2)	31(3)	0	0	0
Au(2) Rb	14,2(8) 22(3)	27(3)	18(1)	0	0	0

Abb. 1. Ebene $3.6.3.6. + 3^26^2(1:2)$ -Gold-Netze.

einfachte Bild der chemischen Bindung wird durch die Existenz des von Jansen *et al.* kürzlich vorgestellten Cs₃AuO [18] gestützt, das transparente Kristalle bildet und somit recht gut als ionogen aufgebautes Caesiumauridoxid, "(Cs⁺)₃Au⁻O²⁻", angesehen werden kann. In diesem Zusammenhang ist auch ein von Jäger *et al.* [19] beschriebenes Ca₃AuN interessant, das basierend auf quantenmechanischen Rechnungen als Calciumauridsubnitrid, "(Ca²⁺)₃Au⁻N³⁻ + 2e", formuliert wird.

Die Sprödigkeit und die geringen Molvolumina von K_2Au_3 und Rb_2Au_3 lassen sich ebenfalls in Form einer ionogen Formulierung, " $(M^+)_2[Au_3]^{2-}$ ", deuten. Sie stehen somit den Zintl-Klemm-Verbindungen [20, 21] nahe. Die vorgefundenen kurzen Gold-Gold-Abstände weisen auf ein $[Au_3]^{2-}$ -Polyanion hin. Der vorliegende Elektronenmangel ("5 Valenzelektronen") erlaubt jedoch keine Zuordnung von zwei-Elektronen-zwei-Zentren-Bindungen.

5. Strukturbeziehungen zwischen Rb₂Au₃ (Ca₂GaCu₂-Typ) und dem K₂PtS₂- und W₂CoB₂-Typ

 Rb_2Au_3 und K_2Au_3 sind entsprechend der Formulierung $M_2Au(1)Au(2)_2$ isotyp mit Ca_2GaCu_2 [22]. Dieser Strukturtyp ist nahezu punktlagengleich mit dem

Abb. 2. Zentralperspektivische Darstellung von Rb_2Au_3 längs [010].

TABELLE 4. Abstände (Å) und Koordinationsverhältnisse in (a) Rb_2Au_3 und (b) K_2Au_3 [10]

(a) Rb ₂ Au ₃		(b) K_2Au_3	
Au(1)-4 Au(2)	2,827(2)	Au(1)-4 Au(2)	2,802(1)
-4 Rb	3,429(6)	-4 K	3,365(6)
Au(2)–1 Au(2)	2,694(6)	Au(2)–1 Au(2)	2,688(4)
-1 Au(2)	2,748(6)	-1 Au(2)	2,766(4)
-2 Au(1)	2,827(2)	-2 Au(1)	2,802(1)
-2 Rb	3,495(9)	-2 K	3,332(8)
-4 Rb	3,503(6)	-4 K	3,410(8)
Rb-2 Au(1)	3,429(6)	K-2 Au(1)	3,365(6)
-2 Au(2)	3,495(9)	-2 Au(2)	3,332(8)
-4 Au(2)	3,503(6)	-4 Au(2)	3,410(8)
-4 Rb	3,845(4)	-4 K	3,810(6)

K₂PtS₂- [23] und W₂CoB₂-Typ [24]. Diese A₂BX₂-Verbindungen kristallisieren alle im Raumgruppentyp *Immm* mit praktisch gleich großen bzw. identischen Lageparametern für die A und B-Atome (vgl. Tabelle 5). Die Unterschiede zwischen den Strukturtypen werden im wesentlichen durch den y-Parameter der X-Atome bestimmt. Im K₂PtS₂ liegen mit y=0,216 < 1/4isolierte, ebene [PtS_{4/2}]-Quadratketten vor (Abb. 4(a)). Im Rb₂Au₃ (Ca₂GaCu₂-Typ) werden die [Au(1)-Au(2)_{4/2}]-Quadratketten mit $y=0,2525 \approx 1/4$ zu ebenen 3.6.3.6. + 3²6²(1:2)-Netzen verknüpft, in denen die Au(2)-Atome längs [010] annähernd äquidistant sind

Abb. 3. Umgebung von Rb in Rb₂Au₃.

TABELLE 5. Kristallographische Daten von K_2PtS_2 [23], Ca₂GaCu₂ [22] und W_2CoB_2 [24]. Die Literaturwerte von K_2PtS_2 und W_2CoB_2 wurden jeweils mit der Matrix (001/010/100) transformiert

K_2PtS_2 , Immm, $a = 3,59$ Å, $b = 7,08$ Å, $c = 9,37$ Å						
Lage Be	esetzung	x	у	z		
2a	2 Pt	0	0	0		
4h	4 S	1/2	0,216	0		
4j	4 K	0	1/2	0,192		
Ca₂GaC	$u_2, Immm, a = 4,2$	274 Å, $b = 5,48$	34 Å, c=8,994	Å		
Lage Be	esetzung	x	у	z		
2a -	2 Ga	0	0	0		
4h	4 Cu	1/2	0,2537	0		
4j	4 Ca	0	1/2	0,1961		
W ₂ CoB ₂	, <i>Immm</i> , <i>a</i> =3,17	7 Å, <i>b</i> =4,561	Å, c=7,075 Å	4		
Lage Be	esetzung	x	у	z		
2a -	2 Co	0	0	0		
4h	4 B	1/2	0,3	0		
4 i	4 W	0	1/2	0 205		

(Abb. 4(b)). Im W_2COB_2 bilden die B-Atome mit y=0,3>1/4 zwischen den $[COB_{4/2}]$ -Quadratketten B_2 -Hanteln (Abb. 4(c)).

Dank

Der Autor dankt Herrn Professor Dr. H. Jacobs für sein stetiges Interesse an diesen Arbeiten und für deren Unterstützung mit Institutsmitteln.

Literatur

- 1 U. Zachwieja, Z. Anorg. Allg. Chem., 619 (1993) 1095.
- 2 U. Zachwieja, J. Alloys Comp., 199 (1993) 115.
- 3 U. Zachwieja, J. Alloys Comp., 196 (1993) 187.

Abb. 4. Ebene $[BX_{42}]$ -"Quadratketten" in (a) K_2PtS_2 , (b) Ca_2GaCu_2 und (c) W_2CoB_2 .

- 4 U. Zachwieja, J. Alloys Comp., 196 (1993) 171.
- 5 R. Suhrmann und K. Clusius, Z. Anorg. Allg. Chem., 152 (1926) 52.
- 6 G. Brauer, Handbuch der Präparativen Anorganischen Chemie, Bd. 2, Ferdinand Enke Verlag, Stuttgart, 1978.
- 7 H. Jacobs und D. Schmidt, Curr. Top. Mater. Sci., 8 (1982) 381.
- 8 G.M. Sheldrick, SHELXTL PLUS, Release 4.21/V, Siemens Analytical X-Ray Instruments, Madison, USA, 1990.
- 9 B.A. Fenz, Structure Determination Package, College Station, Texas, USA und Enraf-Nonius, Delft, NL, 1978.
- 10 P. Krieger-Beck, A. Brodbeck und J. Strähle, Z. Naturforsch., 44b (1989) 237.
- 11 W.B. Pearson, *The Crystal Chemistry of Metals and Alloys*, J. Wiley, New York, 1972.
- 12 U. Müller, Anorganische Strukturchemie, B.G. Teubner, Stuttgart, 1992.
- 13 R.W. G. Wyckoff, Crystal Structures, Bd. 1, J. Wiley, New York, 1962.

- 14 W. Biltz, Raumchemie der festen Stoffe, Verlag Leopold Voss, Leipzig, 1934.
- 15 F. Hensel, Z. Phys. Chem. N.F., 154 (1987) 201.
- 16 W.E. Spicer, A.H. Sommer und J.G. White, *Phys. Rev.*, 115 (1959) 57.
- 17 F. Wooten und G.A. Condas, Phys. Rev., 131 (1963) 657.
- 18 C. Feldmann und M. Jansen, Angew. Chem., 105 (1993) 1107.
- 19 J. Jäger, D. Stahl, P.C. Schmidt und R. Kniep, Angew. Chem., 105 (1993) 738.
- 20 H. Schäfer, B. Eisenmann und W. Müller, Angew. Chem., 85 (1973) 742.
- 21 R. Nesper, Prog. Solid State Chem., 20 (1990) 1.
- 22 M.L. Fornasini und F. Merlo, J. Less-Common Met., 142 (1988) 289.
- 23 W. Bronger und O. Günther, J. Less-Common Met., 27 (1972) 73.
- 24 W. Rieger, H. Nowotny und Benesovsky, *Mh. Chem.*, 97 (1966) 378.